Wound splinting regulates granulation tissue survival.
نویسندگان
چکیده
PURPOSE Fibroblast survival within an in vitro collagen matrix is dependent on matrix anchorage to a rigid substratum. The purpose of this study was to determine whether granulation tissue survival in vivo also is dependent on matrix anchorage. We hypothesized that splinting an excisional wound (i.e., anchoring the wound edges) would promote granulation tissue survival and that desplinting a splinted wound would produce granulation tissue apoptosis. METHODS Eighteen Wistar rats (3 months, 350 g) underwent excisional wounding (2 x 2 cm, dorsal skin) with immediate wound splinting (a metal template affixed with sutures) on day 0. On day 6, rats (n = 6 per group) underwent splint removal (desplinted), splint removal with circumferential incision of the wound edge (desplint/release), or no intervention (splinted); sacrifice of all animals was on day 7. Frozen sections of granulation tissue were stained with TUNEL or H and E; data were analyzed with ANOVA and the unpaired t test. RESULTS The cross-sectional and surface area of the desplinted and desplint/release granulation tissue both decreased compared to the splinted granulation tissue (*P < 0.05). The nuclear density of the desplint/release granulation tissue was 25% less compared to the splinted granulation tissue (*P < 0.05). The desplinted and desplint/release apoptotic rates were twice and >10x greater than the splinted apoptotic rate, respectively (*P < 0.05). CONCLUSIONS The rate of cell death in a splinted wound (an in vivo equivalent of an anchored FPCM) is minimal to nil, which is consistent with our hypothesis. Desplinting and releasing the wound edge of a previously splinted wound (the in vivo equivalent of a detached FPCM) results in granulation tissue regression and a large increase in apoptosis. Desplinting a wound alone results in changes somewhat intermediate to the splinted and desplint/release conditions. Loss of wound anchorage acutely promotes granulation tissue apoptosis.
منابع مشابه
Wound matrix attachment regulates actin content and organization in cells of the granulation tissue.
Actin cytoskeletal polymerization is associated with a pro-proliferative, pro-survival state. We hypothesized that the actin polymerization of wound cells is increased in the presence of wound matrix attachment and is decreased after disruption of this attachment. Musculocutaneous flap and wound splinting models were used to investigate the effect of wound matrix attachment on the actin cytoske...
متن کاملA biological membrane-based novel excisional wound-splinting model in mice (With video)
Rodents have robust wound healing mechanism compared to other animal species. The major mechanisms of wound healing differ between rodents and humans. In humans, wound healing primarily depends on re-epithelialization and granulation tissue (GT) formation, whereas wound contraction is more important during rodent wound closure. In this study, we described a novel excisional wound-splinting mode...
متن کاملMMP-13 Regulates Growth of Wound Granulation Tissue and Modulates Gene Expression Signatures Involved in Inflammation, Proteolysis, and Cell Viability
Proteinases play a pivotal role in wound healing by regulating cell-matrix interactions and availability of bioactive molecules. The role of matrix metalloproteinase-13 (MMP-13) in granulation tissue growth was studied in subcutaneously implanted viscose cellulose sponge in MMP-13 knockout (Mmp13(-/-)) and wild type (WT) mice. The tissue samples were harvested at time points day 7, 14 and 21 an...
متن کاملEquine Wounds: Triage to Treatment
Exposed bone Exposed or denuded bone is a common complication of wounds of the distal aspect of the limb. Exposed cortical bone in which the periosteum has been removed, is prone to desiccation of the superficial layers of the cortex, which may result in infectious superficial osteitis and sequestrum formation. Exposed bone within a wound can delay wound healing directly if the bone becomes inf...
متن کاملFOXO1 Differentially Regulates Both Normal and Diabetic Gingival Wound Healing
We have previously demonstrated that keratinocyte-specific forkhead box O1 (FOXO1) deletion interferes with keratinocyte migration in normal skin wounds. However it has an opposite effect in diabetic skin wounds, significantly improving the healing response. In addition we found that skin epithelium regulates connective tissue healing mediated by FOXO1, which is strongly associated with wound a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of surgical research
دوره 110 1 شماره
صفحات -
تاریخ انتشار 2003